Volume 16, Issue 1 (Winter-Spring 2022)                   IJOP 2022, 16(1): 37-46 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Babaei F. Interaction of Plasmon-Exciton at Interface of a Metal Thin Film and a C-Shaped Dielectric Columnar Thin Film Including Exciton Molecules. IJOP 2022; 16 (1) :37-46
URL: http://ijop.ir/article-1-493-en.html
Department of Physics, University of Qom, Qom, Iran
Abstract:   (1456 Views)
In this study, the interaction of surface plasmon polariton and surface exciton at the interface of a plasmonic medium and a dielectric medium with a C-shaped column morphology consisting of exciton molecules theoretically and classically was investigated in the Kretschmann configuration using the transfer matrix method. The optical absorption spectra of surface plasmon polariton, surface exciton, and surface plexciton have been depicted. The results showed that when the surface plasmon polariton frequency is equal to or close to the frequency of the surface exciton, the polariton mode has two branches, high and low. The mode splitting is caused by the interaction of the surface plasmon polariton and the surface exciton. The characteristics of the splitting energy were analyzed at different structural parameters. The being surface of the plasmon, exciton, and plexciton waves and their localization at the interface between plasmonic and dielectric media were proved by the time averaged Poynting vector and the local absorption.
Full-Text [PDF 833 kb]   (1007 Downloads)    
Type of Study: Research | Subject: Surface Optics, Plasmonic Structures
Received: 2022/04/29 | Revised: 2022/09/4 | Accepted: 2022/09/10 | Published: 2022/12/23

References
1. M. Pelton and M. Sheldon, "Plasmon-exciton coupling" Nanophotonics, Vol. 8, pp. 513-516, 2019. [DOI:10.1515/nanoph-2019-0065]
2. Y. Niu, H. Xu, and H. Wei, "Unified Scattering and Photoluminescence Spectra for Strong Plasmon-Exciton Coupling," Phys. Rev. Lett., Vol. 128, pp. 167402 (1-5), 2022. [DOI:10.1103/PhysRevLett.128.167402]
3. M. Kumar, J. Dey, S. Swaminathan, and M. Chandra, "Shape Dependency of the Plasmon-Exciton Interaction at the Nanoscale: Interplay between the Plasmon Local Density of States and the Plasmon Decay Rate," J. Phys. Chem. C, Vol. 126, pp. 7941-7948, 2022. [DOI:10.1021/acs.jpcc.2c00701]
4. D. Melnikau, P. Samokhvalov, A. Sánchez-Iglesias, M. Grzelczak, I. Nabiev, and Y.P. Rakovich, "Strong coupling effects in a plexciton system of gold nanostars and J-aggregates," J. Luminescence, Vol. 242, pp. 118557 (1-7), 2022. [DOI:10.1016/j.jlumin.2021.118557]
5. S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, "Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping," Phys. Rev. B, Vol. 86, pp. 235402 (1-6), 2012. [DOI:10.1103/PhysRevB.86.235402]
6. S. Balci, "Ultrastrong plasmon-exciton coupling in metal nanoprisms with J-aggregates," Opt. Lett., Vol. 38, pp. 4498-4501, 2013. [DOI:10.1364/OL.38.004498]
7. G. Zengin, M. Wersäll, S. Nilsson, T.J. Antosiewicz, M. Käll, and T. Shegai, "Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions," Phys. Rev. Lett., Vol. 114, pp. 157401 (1-14), 2015. [DOI:10.1103/PhysRevLett.114.157401]
8. P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, "Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates," Nature Photon., Vol. 7, pp. 128-132, 2013. [DOI:10.1038/nphoton.2012.340]
9. V.S. Lebedev and A.S. Medvedev, "Plasmon-exciton coupling effects in light absorption and scattering by metal/J-aggregate bilayer nanoparticles," Quantum Electron., Vol. 42, pp. 701 (1-13), 2012. [DOI:10.1070/QE2012v042n08ABEH014833]
10. T. Srivastava and R. Jha, "Tailoring surface plasmon-exciton polariton for high-performance refractive index monitoring," J. Opt., Vol. 23, pp. 045001 (1-8), 2021. [DOI:10.1088/2040-8986/abd983]
11. J. Sun, Y. Li, H. Hu, W. Chen, D. Zheng, S. Zhang, and H. Xu, "Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures," Nanoscale, Vol. 13, pp. 4408-4419, 2021. [DOI:10.1039/D0NR08592H]
12. P. Yin, Y. Tan, H. Fang, M. Hegde, and P.V. Radovanovic, "Plasmon-induced carrier polarization in semiconductor nanocrystals," Nature nanotechnol., Vol. 13, pp. 463-467, 2018. [DOI:10.1038/s41565-018-0096-0]
13. A. Lakhtakia and R. Messier, " Sculptured thin films: Nanoengineered morphology and optics," Vol. 143. SPIE Press, 2005. [DOI:10.1117/3.585322]
14. J.C. Hernández and J.A. Reyes, "Optical band gap in a cholesteric elastomer doped by metallic nanospheres," Phys. Rev. E, Vol. 96, pp. 062701 (1-11), 2017. [DOI:10.1103/PhysRevE.96.062701]
15. I. Jánossy, Optical effects in liquid crystals, Vol. 5, Springer Science and Business Media, 2013.
16. J. Polo, T. Mackay, and A. Lakhtakia, "Electromagnetic surface waves: a modern perspective," Newnes, 2013. [DOI:10.1016/B978-0-12-397024-4.00001-3]
17. F. Babaei and M. Rostami, "Excitation of surface plexciton wave at interface of a metal and a columnar thin film infiltrated with J-aggregate dyes," Opt. Commun., Vol. 439, pp. 8-15, 2019. [DOI:10.1016/j.optcom.2018.12.072]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb